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Abstract

The main ohject of this paper is to study all regular thin near cctagons
with number of points less than or equal o 100. We find 10 necessary
conditions for their existence. We prove the existence on non-existence
of 23 feasible parameter sets of regular thin near cctagons. We also find
the related design or group if thin near cetagon exists.

1. Introduction

The concept of a near 2n-gon is due to Shult and Yanushka {12}]. A
near 2n-gon is a linear incidence system (g, £) of points and lines such

that:
(i) Each line contains at least two points.
(i) The distance between any two points is at most n.
(iii) For each point-line pair {p, L) there is a unique point on L

nearest p.
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A near 2n-gon has order (s, ¢} if each point lies on 1+ ¢ lines and
each line contains 1+ s points. A near 2n-gon of order (s, ) 1is called
regular with parameters (s, tg, t3, ..., t, = t) if whenever two points x
and y are at distance d = 1, exactly 1 + tq lines through v contain points

at distance d — 1 from x. A regular near 2n-gon is called thin if each line

has exactly two points. If ty = f5 = .- = fp1 = 0, then the near 2n-gon is
a generalized 2n-gon [9] of order (s, ). (Note that #; = -1, f; = 0, and
tg 2tg1,12d <n)

The main object of this paper is to study all possible regular thin near

octagons having parameters (s, ty, £3, 1y = ¢) with s =1 and | p | < 100.
2. Definitions and Known Results

Definition 2.1. A graph G = (p, {) is called strongly regular with
parameters n, k, A, u such that n =] p| and

(1) Each point is collinear with & other points.

(1) Given two collinear points of p, there are A points collinear to
both of them.

(i1} Given two non-collinear points of @, there are p points collinear
to both of them.

Definition 2.2 [6, 9]. A generalized 2n-gon (n = 2) is a linear

incidence system (p, #) such that
(@) diz, y)<n forall x, vy € p.
(i} Given x € g, there exists y € p such that d(x, v) = n.

@31) If d(x, y) = m < n, then there is exactly one path of length m

from x to y.
A generalized 2n-gon is called regular of order (s, t), withs > 1, £ 2 1

if each line contains 1 + s points and each point ieson 1 + ¢ lines.
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Definition 2.3. A generalized 2n-gon is called
(1) a generalized quadrangle if n = 2.
(2) a generalized hexagon if n = 3.
(3) a generalized oclagon if n = 4.

Definition 2.4. If a regular generalized 2n-gon has order (s, 1), then

a regular generalized 2n-gon having order (¢, s} is called the dual of first

one.

Theorems 2.5. If u regular generalized 2n-gon of order (s, i) exists,

then its dual also exists.

Theorem 2.6. Let (g, 0} be a regular generalized 2n-gon of order
(s, t). Then for any point x e g,

Aglx)| = s 1w ), 1sd<n
and
[AR(JC)[ — Snin—l‘

Lemma 2.7. If {p, £) is a regular generalized hexagon of order (s, t),

then for any point x € g,
@ [ A} = s+ 1),
(i) | Ag(@) | = %1 + 1),
(D) | Aglx)] = 8%,
@v) [ @] =(1+s)(+st+s%?),
@) [ =(1+t)1+st +s%2).

Example 2.8 [10]. Let G = Alt (6), the alternating group on 6 letters
{1, 2, 3, 4, 5, 6}. Define a system of points and lines as follows:

@ = {t|t € Inu{(G), the single class of involutions in G},
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two points #1, t € @ are collinear if and only if #ty = tot;. Then the
incidence structure (g, £) is a generalized octagon of order (2, 1).
Lemma 2.9. Any generalized 2n-gon is near 2n-gon.
Theorem 2.10. Let (p, £) be a regular near 2n-gon with parameters
(s, ta, ty, ... by, = t). Then for any point x € g,
[ Ay{e)] = s(1 +¢),

sUHDU - 1) (1 — t3) -+ (¢ —tg-y)
(L+ty) (@ +tg) -1+ tq)

H

[Ag{x) | =

for 2 <d <n.

Definition 2.11. A balanced incomplete block design (BIBD) with
parameters (v, b, r, k, A} is an arrangement of v distinct abjects
{elements) into & blocks such that

(1) each block has exactly & distinct objects,

(2) each object occurs in exactly » different blocks,

(8) each pair of objects lies in exactly A blocks.

A BIBD with parameters (v, b, r, k, 1) is called symmetric if v = b
(and so, of course £ = r). For a symmetric BIBD, the parameters are
(v, &, L)

Definition 2.12. A resolvable design is a BIBD having parameters
(v, b, r, k, A} with b = nr if it is possible to partition the set of & blocks

into r subsets of n blocks each, so that each object occurs exactly once
among the blocks of a given subset (i.e., each subset containg a complete

replication).

Definition 2.13. An affine resolvable design is a resolvable design for
which any two blocks coming from different subsets intersect in the same
number of objects.

Theorem 2.14 [1]. If a (v, b, r, k, L) design is resolvable, and

b=uv+r-~1, then the design is affine resolvable and any two blocks
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2
coming from different subsets intersect in, objects,
v

Definition 2.15. A steiner system S(I, m, n) is a collection of

m-element subsets of an n-clement set B such that every {-element subset
of B lies in exactly one of the m-element subsets.

Example 2.16. A BIBD with parameters (v.b,r, k) =1(9,12,4,3,1)

is an example of steiner system S(2, 38, 9).

Definition 2.17. Let G = (p, £) be the graph of a regular near

2n-gon. We may define an adjacency matrixz A for this graph. The point
set g 1s totally ordered and the rows and columns of 4 are indexed by

this ordering. A contains the entry g, in the s-th row and f-th column
where

0, if s-th and {-th points are not collinear in g.
Qg =
1, if s-th and ¢-th points are collinear in G.

Theorem 2.18. Let A be the adjacency matrix of o regular thin near
octagon (@, £} with parameters (1, ty, ty, 1), Then

{a) the eigenvalues of A satisfy the equation:
(o =T=~8) () + 1+ 2)(x® + by + 1y +igty ~ Lty — 20) = 0.
) & =1 +1 is an eigenvalue of A with multiplicity one.
(c) the matrix A has five distinct eigenvalues k. Uy, U, Uy, Wy, where
kE=1+t,

-1 +t),

i

t
wg = d, where d = 2 Uty —ig =ty ~ Lglsg,
uy =4,

gy = 0.

) if fi, fa, f3. 4 are the multiplicities of the eigenvalues uy, us, us,
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g respectively, then
h=1

n(l 4+ 1) - 21 + 1)
2d

f4 211—2}(‘2“2.

fo =

= f3, where n. = | p|,

Corollary 2.19. The multiplicities fy, f3 of the eigenvalues uq, ug in

above Theorem 2.18 may be writien as

b - 1t — 1o )(1+ )

= = fy, where d = iy + 2 —ty — tg — Lota.
(L+t)(1 +tg)d s 2 2T s

Definition 2.20 [4]. For A > 1, a partial A-geometry with nexus e is

an incidence structure with v points and v blocks such that
(1) each two points are joined by 0 or A blocks,
(11} each two blocks have 0 or A points in common,
(31i} each point lies in & blocks and each block has k points,

@v) if p is any point and B is any block such that p ¢ B, then there
are exactly e blocks C with p in C such that B C is not empty.

Definition 2.21. If ¢ is a partial h-geometry with L > 1 and %k > e,
then § is called a proper partial h-geometry. In this case, (v, A, ¢, k) are
called the parameters of proper partial A-geometry.

Lemma 2.22 [2], A proper partial h-geometry G with parameters
(v, A, e, k) is nothing but a regular thin near octagon (p, {), where

=g Upg and

i

¢ = the set of points of G,
@9 = the sef of blocks of G,

and lines in (p, £} are defined to be the incident point-block pair

(p, B)- (g, £} has parameters

{s,tg,t3, )=, A~1,e~1 k~1) and |p]|=2v.
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Definition 2.28. A near 2n-gon (g, £} is called non-degenerate if
there exist x, ¥ € & such that d(x, ¥} = n.

Lemma 2.24. If (@, £) 15 a non-degenerate regular thin near octagon
with parameters (1, ty, t3, t), then t > tg.

Theorem 2.25 [4]. Suppose there exists a regular thin near octagon
{o, £} with parameters (1, lg, ls, t), where t3 =1, then there exisls a

strongly regular graph having parameters (m, a, ¢, d) such that

. @] ) —ts) L),

2 W i)+t

d = (1+t)(1~+—t3).
l"i"tz

Corollary 2.26. If (g, £) is a regular thin near octagon with
parameters (1, tg, tg, t), then (1 + 1) divides (L +¢).
Theorem 2.27 [4]. Let {p. £) be a regular thin near octagon with
parameters (1, iy, ty, t).
() If tg =1, then ty 2 2.
(i) If ty is an even integer = 2, and t > 1 +1y, then tg > 2iy + 1.
(ii) If ty is an odd integer 2 3, and t > 1 + {3, then t3 > 28y + 2.

Theorem 2.28 {11} If {p, £} is a regular thin near octagon with
parameters (1, to, b3, t) = (1, ty, 2, 2ty + 1), tg # O, then tpy must be an
odd integer.

Definition 2.29. Let ¢ be a linear incidence system of points and

blocks. Define B |G for blocks B, G of G to mean either B = G or
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[B. G} = 0, where [p, q] denotes the number of blocks that contain the
point set {p, g} and [G, H] denotes the aumber of points common to the
block set {G, H}.

Definition 2.30. A parallelism on an incidence system of points and
blocks is an equivalence relation on the set of hlocks such that each
equivalence class, called a parallel class, partitions the point set.

Definition 2.31 (5, 8]). Let G be an incidence system of points and
blocks. Then ¢ is called an (s, r, 1) -net if

() | is a parallelism,
@) G H=[G H]= u for blocks G, H of ¢,

(iii) there is at least one point, some parallel class has s > 2 blocks,
and there are r > 3 parallel classes.

G is called an affine resolvable partial plane if, in addition, there

exists an integer A such that

iv) Ip, ¢l = 0 or &, whenever D #aq.

Theorem 2.82. Let G be an {s, r, W)-net. Then G has

i) v = szu points.
(i) b = sr blocks.
(1) s blocks in every parallel class.
{iv) % = su points per block.
() If G is affine resolvable partial plane (ARPP), then,
O =D)sp = 1) = (= 1) (u 1),
Definition 2.338. Let ¢ be an (s, r, p)-net. Then G is called quasi-

symmetricif X = and G is called symmetricif r = k.

Definition 2.84. A Hadamard Matrix of order m is an m x m matrix

Hof +1’s and - 1’s such that HI' = mlI, where H! is the transpose

matrix of H and Iis the identity matrix.
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Theorem 2.35 [11]. For u > 1, a symmetric (2, 2u, u)-nei G exists if
and only if there exists a Hadamard matrix H of order 2u.

Coroliary 2.836. For u 21, a regular thun near oclagon with
parameters (1, i, tg, 1) = (1, 2u -1, du - 2, 4u - 1) exists if and only if

there exists a symmetric net (s, r, ) = (2, 4u, 2u).
Theorem 2.37 {5]. Let p be a prime and «, § be non-negative integers
with B > max(1, o). Then there exists a symmetric (s, r, p) -net with
s=p, r=2%pP, uw=2%p"Y unless r = 2.

Theorem 2.838 [5]. Let p be a prime and i, j be integers with 1 2 1,

j = 0. Then there exisis a symunetric {s, r, u}-net with

E] :p’:, ro= pi+j, o= pj-

Theovem 2.89 [pl. A regular thin near octagon with parameters
(A, Loy, t3, t) = (1, B ~1, mk — 2, mk — 1) exists if and only if there exists a

symmetric net {s, r, 1} = (m, mk, k), where & 21 and mk = 3.

3. Feasible Parameter Sets for Regular Thin Near Octagons

Theorem 3.1 [3]. Let (g, () be a regular near octagon with

parameters (s, to, ta, t). Then one of the following holds:

iy s =1; or
(1) ta = 0; or
i1y iy = 1; or

(1V) t(} = t'Z(tZ + 1) and t’l = tz(ts + i)
This theorem shows the nonexistence of most regular near octagons.

Theorem 3.2. Suppose a regular near octagon (g, €) with parameters
(1, o, ty, t) exists. Then the parameters must satisfy the following ten

necessary conditions:
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(1 {Ag(x)| = =—= e N, where x ¢ p (Theorem 2.10).

t1 o+ )t - tg)
2) [Aglx)| = ——2 "2 oy ‘ o (T ? .10).
(2) | Aglx)] G+ i)(iss) € N, where x e g (Theorem 2.10)

HE — o )it~ i
@) |Aglx)| = ul(r 3) € N, where x € g (Theorem 2.10).

()1 +ty)

b~ 1) (1 + £)?
(4) fz = f3 = ""(—W—Z—)—{—"Ll'— & N, where d = ttz + 2t — fl,g - fa - tztg

1+ to) {1 +13)d
(Corollary 2.19).

(5) t > t3 (Lemma 2.24).

(6) (1 +t3) divides (1 +t) {(Corollary 2.26).

(M If tyg =1, then i3 2 2 (Theorem 2.27).

(8 If tg is an even integer > 2, and 1 > 1 + ta, then t3 > 2ty +1
(Theorem 2.27).

9 If ty is an odd integer 23, and t > 1 + 3, then ig > 2ty + 2
{(Theorem 2.27).

(A0) If tg # 0,83 = 2y, t = 1 +14y, then ty must be an odd integer
(Theorem 2.28).

Definition 3.3, A family of parameter sets (1, tg, i, £) of a regular
thin near octagon is called feasible if the parameters iy, t5, ¢ satisfy all
the necessary conditions listed in Theorem 3.2,

Theorem 8.4. If t5 = 0, and 1+ = (1 +1,)(1 + ts), then (1, ty, s, t)
is a feasible family of parameter sets.

Proof.

| Agla) | = tl+4) 0 +t)(+ty) S Ulaty)e N,
14 iy 14ty

=) t) -t (L ty) (1w tg) Ve
R e R R Ty e VLR
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ay(e)| = M) t) 0 )0ty

= = = fofat & N.
(At} +t3) (L +1g)(+ ) 2h €
[ o =)t
2T 0ty A+ ty)d
where
d = t{ts + 2) — (tg + by + tals)
= t(l + 32) 4 F - (if2 4 f3 + th:})
= t(l +If2), t— tg S 53(1 + tz).
So
fg - tﬁ3(1+t2)(l+t)(1 +t2)(1 +ﬁ3) - tg(l-l-t) —

(L +te) (X +13) (1 +1a)t
ty # 0 implies ¢ > t3 and clearly {1+ {y) divides 1 +¢.

Corollary 3.5. If (p, ¢} is a regular thin near octagon with

parameters (1, ig, {3, 1) and | p | < 100, then above Theorem 3.4 implies
@ @ tg, 1, 1} = (1, 1, 2, 5).
(i) (L tg, 3. 8) = (1, 1, 3, 7).

Theorem 3.6. If -1y = (L +t9) (1 + ty), then (1, iy, ts, t} is a feasible

family of parameter sets.

Proof. t ~tg = (L +19)(1 +{3) imples T +¢ = {1 +t5)(2 +13),

_tl+t) i) +t)

| Az(x) ] s 1+ 2y = ({2 +13) ¢ N.
)@ —te) et} t) (L tg) .
[ 45()] = (1+t2)(1+t23) (i) +ty) Mei)e N
tt -~ 1) —2g) ML rtp)Art)l—t5) 00
(8@ = N = Genaan) - EReN

. 1t~ 1)1 + 1)
2T 0 ty)Art3)d’
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where

d = tlty +2)—(tg +1t3 + tyly)
= 1+ tg) + (8~ ty) — t3(1 + £g)
=41 +tg)+ (L4 i) (1 +4g) — 1301 + 2y)
=(L+it)(E+1+13 ~tg)
=1+ t5)(1+1¢).

So L) (1 +29)(2 + ts)
ChETg + o) (L + £)

=#2+13) e N,

Clearly, (1 +t3) divides 1 +¢ and ¢ > £4.

Coroliary 8.7, If (p, ¢) is a regular thin near octagon with

parameters (1, tg, ty, 1) and | p| < 100, then above Theorem 3.6 implies
@ (L tg. 13, 1) = (1, 0, 0, 1),
() (L ig, t5. 1) = (1, 0, 1, 2),
(i) (1, ty, ta, ) = (1, 0, 2, 3),
iv) (@, t9, i3, t) = (1, 0, 3, 4),
) (L, ty, t3,8) = (1, 0, 4, 5),
vi} (1, 2o, t3. 1) = (1, 0, 5, 8).

Theorem 3.8. If (1+1y) divides (t-1y), where ty #0; then

(1, tg, 15, ) = (1, g, t ~ 1, 1) is a feasible family of parameter sels.

Prooef. Suppose {-Mi‘? =aelN sol+t=00+t){I+a) i+iy =t
L +1ia

t(l-i—zz)
A == =]l +alt € N,
|22 = T2 = (v a) <

- t(1+t)(t-t«)_a e N
Mg(x);wmlﬂi)u (L+t)e N
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g ()] = o) Ets) ity

= = =qge N
(1+i2)(1+t3) 1'}-(‘.2

- Ht — 1o} (1 + t)?
2T Uty +t3)d’

where

il

d t(tz + 2) - (tz + Ly + ﬂ2t3)

il

Hig +2) ~tg ~ (£ = 1)~ ta(t 1)

=141,
So fz ma(l*f*t)EN.

Clearly, (1 +1ty) divides (1+¢) and ¢t > #53 =t - 1.

Corollary 8.9. If (p. £) is a regular thin near octagon with
parameters (1, to, tg, {) and

©

£ 100, then above Theorem 3.8 and
Theorem 3.2 imply

@ Q, 9, 83,8y = (1, 1 2, 38),

Gi) {1, £, 23, 8) = (1, 1, 4, 5),

[

(i) (1, g, tg, t) = (1, 1, 6, 7),
iv) (1, t9, t3,8) = (1, 1, 8, 9),
) (, ta, £3, ) = (1, 2, 7, 8),
(vi) (1, tg, t3, t) = (1, 2, 10, 11),
(vit) (1, tg, &5, 1) = (1, 3, 6, 7),
(viii) (1, te, £3, 1) = (L, 8, 10, 11),
(ix) (1, ta, tg, £) = (1, 4, 13, 14),
(x) (1, ta, t3, 1) = (1, 5, 10, 11),
(xi) (1, tg, tg, t} = (1, 7, 14, 15),
(xii) (1, ts, t3, t) = (1, 9, 18, 19),

iy (1, £y, ta, 1) = (1, 11, 22, 23).
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Theorem 3.10. (1, tg, ty, t) = (1, f9, toy + t%, ly + t{)? + tg), where tg = 1,

is « feasible family of parameter sets.
Proof.
Vit =140y +05 +15 = (1+t5)(1+t5).
tty =ty +15 = 150 +ty), ta(l 4 #5) = .

Aglx)| = .’_1(1%” D) e N,

2

HE+ )t —tg) _ t%(l +1)e N

A )
Ay = L)y

(1 +12) (1 +13)

;- 1 - t9) (1 + 1)
2- (1+t2)(1+33)d,

where d = ity + 2) — iy ~ b3 ~ oty = to(1 + o).

So fy = to(1 +t2)% & N.

Clearly, (1 +£5) divides {1 +¢) and ¢ l> i3.

Corollary 3.11. If (p, 4) is a regular thin near octagon with
paramelers (1, ty, by, 1) = (1, by, iy + 5, ty + 15 + £3) and | <100, then
above Theorem 3.10 implies that

(1,45, 85, )= (1, 1, 2, 3).
But this parameter set is already listed in Corollary 3.9.

Corollary 8.12. If {p, £} is a regular thin near octagon with
parameters (1, tg, t3, 1) = (1, 0, 0, 1) and || <100, then Theorem 2.6

tmplies that

(i) 1,0,0,6)=(1,0,0, 1),
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() (1L 0,0, ¢)=(10 0 2),
Giiy (1, 0, 0, t) = (1, 0, 0, 3).

Bul first parameter set (1, 0, 0, 1} is already listed in Corollary 3.7.

4. Existence or Non-existence of Regular Thin Near Octagons

with Feasible Parameter Sets

4.1. Parameter sets of the form (s, iy, ta, t) = (1, 0, 0, £)

In this family of parameters {s, ¢y, ty, {) = (L, 0, 0, 1), we have only
three feasible parameter sets with | @ | £ 100 (see Corollary 3.12).

4.1.1. The parameter set (s, iy, 13, t) = (1, 0, 0, 1)

In this case regular thin octagon (g, £) exists and is the unique

ordinary regular octagon with || =8 = | £].
4.1.2. The parameter set (s, g, ta, t) = (1, 0, 0, 2}

We know from Example 2.8 that a regular generalized oztagon of
order (2, 1) exists. We also know the following facts:

(1) A regular generalized 2n-gon of order (s, 1) is a regular near
2n-gon with parameters: (s, f3, t3, ..., {1, ) such that &y = i3 = =1,

= 0 (see Lemma 2.9).

(2) If a regular generalized 2n-gon of order (s, t) exists, then its dual

regular generalized octagon of order (¢, s} also exists (see Theorem 2.5).

Using the above result (2), the existence of a regular generalized

octagon of order (2,1} implies the existence of a regular generalized
octagont of order (1, 2). But then the result (1) above implies that a

regular thin near octagon with parameters {1, 0, 0, 2) exists.
4.1.3. The parameter set (s, {3, 3, t) = (1, 0, 0, 3)

The existence or non-existence of a regular thin near octagon (g, ()
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having parameters (1, 0, 0, 3} is not yet determined. It is still an open

question,

4.2. Parameter sets of the form (s, to g, )= {1, 2u — 1, 4y - 2 4y — 1},

T |

In this family of parameters (8,tg, t3, 1) = (1, 2u — 1, 4y — 2, du -~ 1),
where u 21, we have six feasible parameter sets with || < 100 (see

Corollary 3.9).

Theorem 4.2.1 [1]. et u = 1. If 4u -1 is a prime power, then there

exists an affine resolvable design with parameters (u, b, r, B, A) =

(4, 8u ~ 2, 4 — 1, 20, 2 1).

Corollary 4.2.2. There exists an affine resolvable design with the
following parameters:

@ (v, 0.7, b, 2) = (4,6 3 2 1),

) @ 0,7,k A) = (8,14, 7, 4, 3),
(D) (v, b, r, &, M) = (12, 22, 11, 6, 5),
@v) (v, b, r, &, 1) = (20, 38, 19, 10, 9),
) (v, b, r, &, 1) = (24, 46, 23, 12, 11),

Lemma 4.2.3 {7]. There exists an affine resolvable design with
parameters (v, b, r, k, 1) = (16, 30, 15, 8, 7).
Proof. Thirty blocks given by

(,0,1,2,7,9,12,13), (3, 4, 5, 6, 8, 10, 11, 14) modulo 15
form an affine resolvable design with parameters (16, 30, 15, §, 7).

Theorem 4.2.4 [11]. A regular thin near octagon with parameters
(s, t9, t3,8) = (1, 2u — 1, 4u — 2, 4 — 1) exisis if and only if there exists

an  affine  resolvable design  having parameters (v, b, r, k, A =

(4w, Bu — 2, 4u -1, 2u, 2u — 1), where u > 1.
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Corollary 4.2.5. Regular thin near octagon with the following
parameters do exist:

@ @ty 13, 8) = (1, 1, 2, 3),

() (L ty, 3, 2) = (1, 3, 6, 7),
(i) (1, tg, 84, ) = (1, 5, 10, 11),
{iv) (L tg, t3, £) = (1, 7, 14, 15),
V) (L tg, 13, 8) = (1, 9, 18, 19),
(viy (1, g, t5, ) = (1, 11, 22, 23).

Proof. Using Corollary 4.2.2, Lemma 4.2.3, and Theorem 4.2.4, the
required result is quite obvious.

Example 4.2.6. In this example, we explain how to construct a
regular thin near octagon with parameters (1, 7,14, 15} from a given

affine resolvable design D having parameters {16, 30, 15, 8, 7).

Let A = {1, 2, ..., 16} be the set of 16 points and B = (B, B, ... Bgy)
be the set of 30 blocks of the design D). Let A’ = 1,2, ..., 16" be an
isomorphic copy of A with AN A = @. Let p = {w}J ltU Al AU B,
where o and ' are new points. We now construct ¢ = (g, £} as follows:

(1) o isjoined to each point in A.

(ii} o' is joined to each point in A’

(it1) each point @ € A isjoined to the 15 blocks containing a.

(iv) each point @' € A’ is joined to the 15 blocks missing a.

Under this construction the graph ¢ = (¢, £} is a regular thin near

octagon with parameters (1, 7, 14, 15) and for any x & g, we have

1

[ 2] =1+ A{x) [ +] Agle) |+ Ag(x) | +] Aglx))

1+16+30+16 +1

It

64.

i
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4.3. Parameter sets of the form (s, fy, t4, 1) ={1,0, t =1, ¢), £ > 2

In this family of parameters (s, to, 3, t) = (1, 0, ¢ ~ 1, £}, where ¢ = 2,

we have five feasible parameter sets with | | € 100 (see Corollary 3.7).

Theorem 4.8.1 [5]. Let p be a prime number and «,  be non-negative
integers with B =z max(l, «). Then there exisis a symmelric (s, r, u)-net
with

s=p,r=2"pF pn=2%pPt unless r =2

Theorem 4.3.2 [5]. Let p be a prime number and i, j be integers with

i =1, j 2 0. Then there exists a symmelric (s, r, u)-net with

s=p', r=p", p=pl

Theorem 4.8.3 [Bl. A regular thin near oclagon with parameters
1, to, fa, t) = {1, B =1, mk ~ 2, mk ~ 1) exists if and only if there exists a
2s 43

symmetric net (s, r, u) = (n, mk, k), where k 21 and mk 2 3.
Corollary 4.3.4. Symmelric nets with the following parameters exisi:
() (s, 7, 0) =(3,3 1),
Gy (s, r, 1) = (4, 4 1),
Gi) (s r, 1) = (5, 5, 1),
av) (s r, )= (7,7, 1).
Proof. We use Theorem 4.3.1.

@ p=31

L, j=0=>{s ru) = (3 3 1) netexists.

(y p=2,1 =0 = (5, 7, 1) = {4, 4, 1} net exists.

r..
1
b

[

(i) p=5,i=17=0=(sr, n)=(5 5 1) netexists,
(V) p=T71=1j=0= (s, r, 1) = (7, 7, 1) net exists.

Corollary 4.3.5. Regular thin near octagons with the following

parameters do exist:
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(@) (1, ¢, b, 8) = (1, 0, 1, 2),
(i) {1, 29, 43, ¢) = (1, 0, 2, 3),
(i) (1, £y, ta, 8} = (1, 0, 3, 4),
(v) (1, tg, t5, 1) = (1, 0, 5, 6).
Proof. We use Corollary 4.3.4 and Theorem 4.3.3.

Example 4.3.6. We construct a regular thin near octagon with
parameters (1, {y,t3,¢)=(1, 0,1, 2) from a given corresponding net
(s, 7, 1) = (3, 3, 1). From Corollary 4.3.4, we know 9 points and 9 blocks

f 1)-net.
of (3, 3, 1}-net (3e) 1

9 {(t 27)

(58 9)

(2 6)

Figure 1

We join each block to the points it contains. We obtain a regular thin
near octagon g = (g, ¢) with parameters (1, 0, 1, 2) and for any x e g,
we have

o] =1+]Ap(x)]+|Aglac}| +] Ag(x) |+ Aglx)]

=1+3+6+6+2

=18,
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| £| = The number of edges (or lines)
= 27
{see above graph).
Conjecture 4.3.7. A regular thin near octagon with parameters
(1, ta, ta, 1) = (1, 0, 4, 5) does not exist.

4.4. Parameter sets of the form (s, iy, 3, #) = (1, 1, 2u, 2u +1), 1w 2 1

In this family of parameters (s, &y, t3, ¢} = {1, 1, 2u, 2u + 1), where
v z1, we have four feasible parameter sets with igol <100 (see

Corollary 3.9).

Theorem 4.4.1. Regular thin near octagon with the following

parameters do exisi:

Ay (1 tg, tg, ) = (1, 1, 2, 3),

@y (1, tq, 3, t) = (1, 1, 4, 5),

(i) (1, £y, 3, £} = (1,1, 6, 7),

(].V) (1, tz, ﬁ3, t) = (1, 1, 8, 9)
Proof. We use Theorems 4.3.1, 4.3.2, and 4.3.3.

) p=38,1=1j=1=(s,r, u)= (2, 4, 2) -net exists.

{

But this implies that a regular thin near octagon with parameters
{1, 1, 2, 3) exists.

() p=3, a=1B=1= (s r u)={(3 6, 2)-netexists.

But this implies that a regular thin near octagon with parameters
(1, 1, 4, 5) exists.

Qi) p=2i=2j=1= (s, r, u}= (4, 8 2)-net exists.

o

But this implies that a regular thin near octagon with parameters
(1, 1, 6, 7) exists.



REGULAR THIN NEAR OCTAGONS .. 3k
) p=5a=L8=1=(sr pu)= (5, 10, 2)-net exists.

But this implies that a regular thin near octagon with parameters
{11, 8, 9) exists.

Example 4.4.2. We construct a regular thin near octagon with
parameters (1, 1, 2, 3) from the corresponding net (s, r, u) = (2, 4, 23,
This net has 8 points, namely, ¢ = {I, 2, ..., 8} and 8 blocks partitioned

into 4 parallel classes of 2 blocks each with every block containing 4
points. If § is the set of blocks, then

B=1{15628),(23 4 7U{0 2 4, 5), (3, 6,7, 8)}
UL 4,7, 8). (2.3, 5 6} U{ 2 6, 7), (3, 4, 5, 8)}.

Now, we join each block to the points it contains (see graph below).

Figure 2

We obtain a regular thin near octagon ¢ = {9, £} with parameters
{1, 1,2 3) and forany x e @, we have
P =CUp
and
e 1+|A1(x)J+[A2(x)]+fA3(x)f+fA4(x)|
=l+4+6+4+1
= 16,




36 SAEED A. BHAD, SIHAM J. AL-SAYYAD and SUHA A. WAZZAN

[ ¢] = The number of edges (or lines)
= 332,
4.5. Parameter sets of the form (s, t5, f3, 1) = (L, w, 3u + 1, 3u+ 2, u >0

In this family of parameters (s, to, t3, ¢} = (1, u, 3u + 1, 3u + 2), where
w20, we have five feasible parameter sets with |@] < 100 (see
Corollaries 3.7 and 3.9).

Theorem 4.5.1. Regular thin near octagons with the following
parameters do exist:

1) (L ta, 3. 8) = (1, 0, 1, 2),
(i) (, tg, £, t) = {1, 1, 4, 5),
(i) (1, £, 25, £) = (1, 2, 7, 8),
Gv) (U, 19, ia, 1) = (1, 3, 10, 11).

Proof. (i) Regular thin near octagon with parameters (I, 0,1, 2)

exists. This case has been discussed before (see Example 4.3.6).
(i) Let 4y ={1, 2,..,5, =}, A3 ={1',2, ., 5", @'}, A3 ={1", 2", .., 5", ="},
where A4, N A; =@ 1£i<3, 1723 1#).

Let B be the set of 15 blocks of the resolvable design with parameters
{v, b, 7, k, 1) = (6,15, 5, 2, 1) given by

{(12), (35), (40)} modulo 5.

let g ={o, o, a"tUA UAy UAs UB, where o, ¢, o are new
symbols. Thus | g | = 36.

We now construct a graph § on the point set @ as follows:
(A) o is joined to each point in Aj,

{B) o' 1s joined to each point in A,

{0) " isjoined to each point in A,

(D) {1 2) isjoined to the points 1, 2; 3/, 5" 4", ©" modulo 5,
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(F) (3 5) is joined to the points 3, 5; 4, w0’y 17, 2" modulo 5,
(F) (4 ) is joined to the points 4, w:; 1, 2 3", 5" modulo 5,

where o, @' and «” remain unchanged under all the automorphisms

modulo 5.

This construction gives us the graph of a regular thin near octagon
with parameters (1, 1, 4, 5} and for any x € f,

|91 =1+] A1) |+ ] Agla) | +] Ag(0) | +] A4 ()]
=1+6+15+12+2
= 36.
(iii) There exists a resolvable design with parameters (v, b, r, k, L) =
(9,12, 4, 3, 1) given by
{167)(235), (48 ) modulo8.

From this design we can obtain a multiple design (also resolvable) with
parameters (v, b, r, B, rYy = (9, 24, 8, 3, 2) by taking all the blocks of
above design twice. Then we can construct the graph of a regular thin
near octagon with parameters {1, 2,7, 8) and for any x € ©,

[l =1+]81(0) ]+ ] Aglx)] +1az(x) ] +ag()]
=1+9+24+18+2
= b4,
(iv) There exists a resolvable design with parameters (v, b, r, b, &} =
(12, 33,11, 4, 3} given by
(0, 1,3, 7). (2, 4, 9, 10), {0, 5, 6, 8)} modulo 11.

As in part (i), we can now construct the graph of a regular thin near
octagon with parameters (1, 8, 10, 11) and for any x € §,

}m=1+]Al(x)i+1A2(x)§+|/_\3(x)1+iA4(x)}
=1+4+12+33+24+2
= T2,
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Theorem 4.5.2 {11}, The existence of a regular thin near octagon with,
parameters (s, lo, by, t)=(1, k~1, mh - 2, mk -1), implies  that the
existence of a resolvable design  with parameters (v, b, r, k, L) =
(mk, m{mhk — 1), mk 1, k, b~ 1).

Corollary 4.5.3. A regular thin near octugon with parameters
(s, by, t3, 1) = (1, 4, 13, 14) does not exist,

Proof. Suppose, by way of contradiction, there exists a regular thin
hear octagon with parameters (s, ta: 3, 1) = (1, 4, 13, 14). Then the above

Theorem 4.5.2 implies that there exists a resolvable design with
parameters (v, b, r, k, 1) = (15, 42, 14,5, 4). But we know that a

resolvable design with parameters (v, b, r, k, 1) = (15, 42, 14, 5, 4) does

not exist (see [10]). So we get a contradiction and thisg completes the proof.

4.6. Parameter sets of the form (s, 69, 13, £) = (1, 1, u, 200 + uz=2

In this family of parameters (s, to, f3, t) = (1, 1, w, 2u +1}), where
Uz 2, we have only two feasible barameter sets with fp| <100 (see
Corolary 3.5).

Theorem 4.6.1. Regular thin near octagon with the following
parameters do not exist:

(1) (1: fz, iS: t) = (L 1s 3: 7):
W) @, tp, 3, 1) = (1, 1, 2, 5).

Proof. (i) Suppose, by way of contradiction, there exists a regular
thin near octagon with parameters {1, 1, 3, 7).

Let x ¢ p. Then | Ag(x)] =1, 1A (x) | = 8, [Ag(x)| = 28, [As(i)] = 42,
and [Ay(x)] = 21.

Thus [ p|=1+8+28+42 + 21 = 100.

Let

Ar(x) = oy, ag, ..., ag),

Aglx) = {21, xy, ..., %98},
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Ax(x) = {¥, y2. - Youls
Aglx) = {21, 22, . Z21)-
Xy is adjacent to exactly 1+ 1y = 2 points of Aj{x), say, a;, ag, and x;
is adjacent to exactly ¢ — £, = 6 points of Ag{x), say, 1. ¥2, .., ¥6-

Furthermore, a; is adjacent to 6 points of Ag(x) other than xy.
Similarly as is adjacent to 6 points of Ay(x) other than x;. Also, a; and
ay cannot be adjacent to the same point of Ag(x) other than x;. Since if
a, and ay are both adjacent to same point of Ag(x) other than x;, then
there are at least 3 distinct paths of length 2 between a; and ap which is

impossible as t; = 1. Solet
a; be adjacent to xg, xg, ..., X7; and
ag be adjacent to xg, xg, ..., ¥13-
This implies
Xg, X3, ey X7 € Agly) e
and
Xg, Xy, . X13 € Agliy). (2

Now, through each y;, i =1, 2, ..., 6; exactly i —#3 =7 ~3 =4 paths
go towards Au(x), making the total number of paths through

Y1, Yo, . vg towards Ag(x) as 24. But {5 = 1 implies no more 2 of these

. 24 ;
paths can intersect at same z; € 5,(x). So there ave at least 5 = 12z;’s,

j=1 2, .., 12 at distance 2 from x;. Thus

1y 29, ey Z19 € Az(xl). (3)

Through each y;, i =1, 2, .., 6; exactly 1+13 =4 paths go towards
Ag(x). d(¥, @)= 2 = there are exactly two paths between y and a.
One of these paths is: y; ~ x; ~ q; (where ~ denotes adjacency). Suppose

second path is: ¥ ~ xo ~ ay.
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Similarly d(y), ag) = 2 = there are exactly two paths between v
and ag. One of these paths is: Y1 ~ %1 ~ ag. Suppose second path is:
Y~ xg ™ ag.

Thus 3 ~ 21, x5, x5. But y; is adjacent to 4 points of Ag(x).

This fourth point cannot belong to the set {23, x4, ., 9}, for

otherwise we shall have 3 paths between v and a;.

This fourth point cannot belong to the set {xg, %19, ..., %13} either, for

otherwise we shall have 3 paths between 1 and asg.

Thus we have, say, y; ~ x4, where z, ¢ {x1, X9, ..., xy3). Similarly
we can prove that yy ~ x5 v ~ x4 Y4 ~ 2p7; where x4, %5, 114, %7

are all distinet and
1 %9, oy 213} N g, 205, 236, %17} = @,
Therefore
X145 X15> %16, %17 € Apfxy). (4)
We also know from the construction that
x € Agfxy). (5)
Combining the results (1) to (5), we conclude that
% X, 23, s 27, 21, 29, s 215} © Asliy ).

Bo |Ag(x)| 2 29. This contradicts that Ay(x)] = 28 for every x e p.
This completes the proof.

(1) Proof is much similar to the proof of (i), and is therefore omitted.
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